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1 EXECUTIVE SUMMARY 
BAE Advanced Information Technologies (AIT) has developed an Information Interpretation 
and Analysis Toolkit (I2AT), providing a set of analytic capabilities that fit within and augment a 
knowledge management system. The I2AT tool will address the challenge of effectively 
analyzing vast amounts of information with limited analyst manpower by focusing analyst 
attention on available pieces of information that produce significant changes in the assessment of 
the situation and identifying additional information that has the potential to do so. 

The central capabilities of the I2AT include: 

•  Interpretation: Assisting in the interpretation of sets of information using knowledge-
based models of both normal and threat activities. 

• False information detection: Identifying pieces of information that are inconsistent with 
the overall information set, whether entered through errors in analysis or through 
deliberate deception. 

• Data needs generation: Identifying additional pieces of information that are critical for 
resolving ambiguities in the interpretation of current information sets. This can be used to 
ensure effective application of ISR collection and analysis assets, whether automated 
sensors or human analyst resources. 

Our approach uses Bayesian Networks, a probabilistic modeling framework, augmented with a 
suite of algorithms for analyzing hypotheses, data, and value of additional information.  The 
techniques we have developed are applicable to a wide range of probabilistic models and to a 
wide variety of domain models. 

Automated generation of potential interpretations will help reduce the time needed to assimilate 
and act on new information. At the same time, flagging new data that is inconsistent with 
existing information will identify potential errors in the knowledge acquisition process or 
adversary attempts at deception, enabling preemptive correction before erroneous interpretations 
precipitate actions. Within a knowledge management framework, data that is tagged as 
potentially deceptive can be tracked to determine what analytic results need to be called into 
question. Finally, I2AT will be able to determine which additional information would have the 
greatest potential to explain observed inconsistencies. 
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2 INTRODUCTION 

2.1 THE INFORMATION INTERPRETATION PROBLEM 

 
Integrated knowledge intensive systems combine data from diverse sources to provide a 
comprehensive picture of some portion of the environment.  In interpreting the output of such 
systems, a key question is how they handle incorrect or unreliable data.  Will the system simply 
fail to generate reliable interpretations when given faulty data or will it be able to detect faults in 
particular data items and ignore them when generating hypotheses?  This is a crucial question for 
the application of such systems to real world problems, since we are rarely guaranteed absolutely 
reliable data in real life situations.   The answer to this question influences the degree of 
confidence we should assign to interpretations by the system and also influences future data 
acquisition (e.g., if certain data are suspect, there may be further data that could be gathered to 
resolve ambiguities). 

2.2 TECHNICAL CHALLENGES 
One challenge is detecting that there is a problem with data in the first place.  If two information 
sources are reporting on the same event and they disagree, then we know that one of them is 
incorrect.  However, in information fusion, the information sources are often reporting on 
different features of the environment that are indirectly related to the hypothesis of interest.  
Consider, for example, battle damage assessment regarding the success of an attack on an enemy 
radar facility. One source of information might be reports by humans visually inspecting the 
damage; another source of information might be ELINT reporting on whether a radar signal has 
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been detected coming from the damaged target.  If a human source reports extensive damage 
while an ELINT sensor reports detection of a radar signal, how should we interpret the evidence?  
Was the human exaggerating the extent of damage?  Was the sensor reporting a false positive?  
Or was the radar still functional despite the extensive damage to the radar facility?  To determine 
which interpretation is correct, we need some way of determining whether there is reason to 
question the data and if there is, we need to pinpoint which data source is faulty. 

The first challenge gives rise to a second: learning an error model for a particular information 
source.  Good error models can help to determine which information source is likely to be in 
error when there is a conflict among data sources.  However, we often lack accurate error 
models.  This is especially true with human sources but can also be true for mechanical sensors, 
whose operating properties can change over time or may differ in an operational setting from 
what was measured in a test environment.  We need, first, to be able to represent the fact that 
there is uncertainty regarding the error model for an information source; and second, we need to 
be able to learn the error model for a source dynamically and automatically, based on how it has 
performed in the past – and we must often do so without knowing ground truth. 

A third challenge is how to resolve ambiguities in the data when we are unable to definitively 
pinpoint which data source is wrong.  For example, when the human battle damage report and 
the ELINT sensor seem to conflict as they do in the example above but we’re unable to 
determine which one, if either, is misleading, we may seek to resolve the impasse by obtaining 
additional information.  Which information would be most useful, however, in resolving the 
ambiguity?  Should we request another fly-over of the damaged target, which may be costly and 
also risky if the radar is still functioning?  Should we apply another sensor to the target, say, a 
stationary rotor sensor that detects the motion of a radar antenna?  These are questions about the 
value of particular information sources in the situation at hand.  A value of information 
computation is needed that takes into account the possible unreliability of information sources. 

Finally, we must not forget the ultimate goal of information interpretation is to provide a unified 
picture of the environment.  The output of an information interpretation system is a hypothesis 
about some aspect of interest of the operational environment.  Proper interpretation of the 
information involves not just the production of a hypothesis but also a determination of how 
much confidence we should place in the hypothesis.  Probabilistic interpretation systems, such as 
Bayes nets, attach a number to an assertion that acts in some sense as a measure of confidence in 
a hypothesis (e.g. “The probability that the radar has been destroyed is 0.78”).  However, a single 
number by itself does not tell the whole story.  Is the number based on the accumulation of large 
amounts of data or only a small amount of data, is it based on reliable information sources or 
unreliable ones, might the number change significantly if further data comes in?  These questions 
relate to a notion of hypothesis confidence that cannot be captured by a single number but their 
answers are vital in assessing the hypothesis.  
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2.3 THE I2AT SOLUTION 

Information Interpretation and Analysis Tool (I2AT)

Hypotheses

Hypothesis 1 Hypothesis 2

Analysis Results
Hypothesis 1
•Interpretation
•Confidence

•Data Consistency
•Value of Add’l Info

Hypothesis 2
•Interpretation
•Confidence

•Data Consistency
•Value of Add’l Info

Interpretation
Analysis

Model LibraryModel LibraryInformation
Set

Information
Set Information

Interpretation

Sensors

Fusion
Engines

Manual
Entry

Sensors

Fusion
Engines

Manual
Entry

Sensors

Fusion
Engines

Manual
Entry

 

Figure 1.  I2AT architecture. 

The I2AT solution to the data validation problem is shown in Figure 1.  We have implemented a 
complete prototype system for information interpretation that demonstrates the utility of our data 
validation tools.  Information from various sources may be entered into the system.  Data may 
come from sensors, manual entry, or backend fusion engines.  There are two stages to the 
processing of that information.  In information interpretation, we use a library of models to 
generate hypotheses from the data.  After hypotheses are generated, we then perform 
interpretation analysis, which goes beyond the generation of hypotheses by computing a 
collection of statistics that help the user understand more fully the status of both hypotheses and 
data and indicates whether or not there is a need to collect more data.  The statistics computed 
include: 

• Data conflict:  Are the data in conflict?  Conflicts in the data indicate that there may be 
problems with certain data items. 

• Hypothesis confidence:  For a probabilistic hypothesis, this measures the degree to which 
the probability will change, on average, as new evidence comes in.  A probabilistic 
hypothesis has high confidence if new evidence will not shift the probability to any 
significant degree. 



 

5

• Data confidence:  For each data item, this measures the probability that that data item is 
correct.  If a data item has low confidence, I2AT will accord it little weight in forming a 
hypothesis. 

• Weight of evidence:  This is a measure of the degree to which a particular piece of 
evidence supports or opposes the hypothesis.  This gives an indication of which pieces of 
evidence are most important in judging the truth of the hypothesis and which have little 
influence on it. 

• Value of information:  If existing data are in conflict and hypothesis confidence low, new 
information should be gathered to resolve the uncertainties.  Value of information 
measures which new piece of information would best resolve remaining uncertainties 
about the hypothesis.  

• Reliability of data sources:  Our confidence in the data produced by some data source on 
a particular occasion should influence our assessment of its reliability.  Repeated 
generation of bad data should cause us to lower our assessment of a source’s reliability.  
I2AT updates the reliability of data sources based on what that data source reports and 
whether it agrees with what other data sources are reporting. 

Key to I2AT’s ability to compute the above statistics is our approach to modeling.  We make use 
of probabilistic models – in particular, Bayesian Networks ([3], [5]).  Our probabilistic models 
differ from most models in that we make use of explicit variables in the model for the reliability 
of evidence sources.  We are in effect introducing an error model for information sources into 
the Bayes net that allows us to reason about the correctness of particular reports and what new 
evidence would best resolve ambiguities. 

Section 3  describes our modeling technique in more detail. Section 4 explains the full range of 
statistics calculated by I2AT and how they are computed.  Section 5 surveys previous work on 
data validation and compares our approach with this work.  Section 6 reports on experiments in 
learning error models using two different learning algorithms.  Section 7 describes the user 
interface to I2AT.  Section 8 explains how I2AT can handle inference across multiple scenarios 
and involving multiple Bayes nets.  Sections 9 and 10 describe how I2AT can be applied to 
domains that are quite different from the BDA domain on which we have focused for most of the 
program.  We conclude in Section 11 with an exploration of ways in which the techniques 
developed in I2AT can be extended. 

3 MODELING IN I2AT 

To describe our approach to modeling, it is useful to have a concrete scenario in mind.  We will 
describe a targeting scenario relevant to effects-based operations and show how we model it in 
I2AT.  Crucial to the model will be sub-models for information sources. 

In our example scenario, our side has carried out an air strike on an enemy radar facility.  A 
battle damage assessment is performed to determine whether the radar was really destroyed.  
There are multiple sources of information.  We have BDA reports from the two pilots who 
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carried out the air strike.  The two pilots give their assessment of the amount of damage to the 
target.  In the case of radar operation, we have two sensors that provide different indicators.  The 
ELNOT sensor detects emissions from the radar (True or False).  The Rotor sensor detects 
whether the radar is rotating (True or False).  Both sensors give a sequence of reports that are 
temporally ordered. 

We use a Bayesian network to model this scenario.  A Bayesian network is a directed acyclic 
graph consisting of nodes which represent random variables ([3], [5]).  They allow for a compact 
representation of complex probabilistic dependencies.  In a discrete BN, each node of the graph 
must also have a conditional probability table (CPT) associated to it.  A CPT specifies the exact 
local probabilistic dependencies (in particular, how the states of the variable probabilistically 
depend on each possible configuration of the parent variables).  All of our models are discrete 
Bayesian networks.   

Bayesian networks are useful in data validation and interpretation.  They are well-suited to 
capturing expert knowledge due to their modularity and understandability.  In addition, learning 
from historic data, automating interpretation, deducing the most likely true states and most likely 
errors, and determining the reliability of sources are tasks that BNs perform well.  They can also 
focus the analyst’s attention on the most important pieces of information, highlight inconsistent, 
potentially incorrect data, and point out information which may resolve ambiguities ([3]). 

Source_Reliability2
LowReliability
ModerateRe...
HighReliability
Infallible

   0
8.00
90.0
2.00

Source_Reliability1
LowReliability
ModerateRe...
HighReliability
Infallible

80.0
15.0
5.00
   0

BDA_Report1
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

8.65
21.2
30.8
39.4

BDA_Report2
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

10.0
24.7
35.4
29.9

Target_Damage_GT
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

10.0
24.0
33.0
33.0

 

Figure 2.  Bayes net fragment for pilots' reports. 

We use Netica™, a popular Bayes net toolkit, to create our models.  Figure 2 shows a fragment 
of a Netica Bayes net relevant to our BDA scenario.  It models the relationships between what 
the pilots report, ground truth about target damage, and each pilot’s reliability.  The variables in 
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the net are shown as rectangles with the variable name at the top followed by the states the 
variable can assume together with their prior probability (the probability is expressed as a 
percentage, so the value 33 is a probability of 0.33). The directionality of the arrows shows that 
what each pilot reports is influenced by the actual damage to the target as well as by the 
reliability of that pilot.  The report of the first pilot (BDA_Report1) is apt to be more inaccurate 
than the report of the second pilot (BDA_Report2) due to the higher probability that the first 
pilot is unreliable in his reporting.  Moreover, the first pilot’s reports are biased in the direction 
of exaggerating damage, whereas the second pilot’s reports, although not guaranteed to be 
accurate, tend to report damage without much bias. 

Note that the reliability of each pilot is characterized as a probability distribution over a range of 
reliability values.  This allows uncertainty about the reliability of a pilot to be expressed and also 
permits modifying beliefs about pilot reliability. 

ELNOT_Mode1
Functioning
Malfunctioning

95.0
5.00

ELNOT_Mode2
Functioning
Malfunctioning

93.2
6.80

ELNOT_Mode3
Functioning
Malfunctioning

91.5
8.53

ELNOT_Mode4
Functioning
Malfunctioning

89.8
10.2

ELNOT_Report4
True
False

31.0
69.0

ELNOT_Report3
True
False

31.4
68.6

ELNOT_Report2
True
False

31.8
68.2

ELNOT_Report1
True
False

32.2
67.8

EW_Radar_Operating_GT
True
False

26.3
73.7

 

Figure 3.  Bayes net fragment for ELNOT sensor. 

Figure 3 shows another fragment of our Bayes net model, a representation of an ELNOT sensor.  
This sensor issues reports about whether it has detected a radar signal.  The various 
ELNOT_Reporti variables are reports by the same sensor at four different times (reports 
variables with a higher number are at a later time).  What the sensor reports at any time depends 
upon whether the radar is operating (putting out a signal) and also on the mode of the sensor, 
which may be “Functioning” or “Malfunctioning.”  The arrows between the mode variables 
indicate that the state of the sensor at one time depends upon its state at a previous time.  If the 
sensor is malfunctioning at one time, it is likely to still be malfunctioning at the next time step.  
When the sensor is malfunctioning, it will likely not report any signal but may report a signal 
present with some small probability; in either case, what it reports when it is malfunctioning is 
completely independent of the whether the radar is operating. 
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Figure 4.  Bayes net fragment for stationary rotor sensor. 

A parallel model is given for the Stationary Rotor Sensor, which detects rotary motion of a radar 
antenna (Figure 4). 
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Figure 5.  Entire Bayes net for BDA model. 

Putting these fragments together, we get the network depicted in Figure 5.. The same network is 
displayed in Figure 6 below and includes all the node states and corresponding probabilities. 
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Figure 6. Full States and Probabilities for Bayes net BDA model 
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4 I2AT APPROACH 
This section discusses in detail our techniques for analyzing data and hypotheses.   

4.1 DATA CONFLICT 
The first step in analyzing the data is to determine whether there is any conflict in the data.  
Conflict in the data indicates that one or more pieces of evidence may be faulty.  A technique for 
measuring the amount of conflict in data has been given by Jensen in [3]. 

Jensen’s measure of data conflict is as follows.  Let e1, e2, en  be data items – i.e. assignments of 
values to evidence variables.  Jensen defines a measure of data conflict by: 

 conflict({e1 , e2  , … en }) = log((Pr(e1)Pr(e2)…Pr(en))/Pr(e1 , e2  , … en )). 

Why does this measure make sense?  Pr(e1)Pr(e2)…Pr(en)  is what the joint probability of  e1 , e2  
, … en  would be were all the data items probabilistically independent of one another;  Pr(e1 , e2  , 
… en )  is their actual joint probability.  Jensen’s conflict measure in effect compares the joint 
probability of the data expected under an independence model with their joint probability under 
the actual model.  If the former is significantly greater, that is very suspicious.  Why?  Because if 
some of the evidence supports a given hypothesis, it’s likely the rest of the evidence will too.  
That is, given some evidence that favors one hypothesis, it is likely that other pieces of evidence 
will too.  Thus the new evidence one gets is very unlikely to be independent of the previous 
evidence.  It’s more likely to be made more probable by the previous evidence.  So in the normal 
case, evidence will be harmonious or mutually supportive.  If there is a strong degree of conflict 
among the evidence, then either a highly unlikely combination of evidence events has occurred 
or else one or more pieces of evidence are wrong or misleading.  If the probability of that 
combination of evidence is low enough, we are led to suspect problems with the evidence. 

To illustrate the computation of data conflict, suppose that pilot1 reports extensive damage to the 
target while pilot2 reports minimal damage.  Intuitively, there is a conflict in these reports.  To 
show this, we note that we have from Figure 2 that Pr(BDA_Report1 = ExtensiveDamage) = 
0.274 and Pr(BDA_Report2 = MinimalDamage) = 0.247.  If these two pieces of data were 
probabilistically independent of one another, then the probability of getting both reports would 
simply be the product of their prior probabilities – i.e. 0.274× 0.247 or approximately 0.0677.  
Using the Bayes net, we can compute that the probability of getting both reports is actually 
0.0433. log(0.0677/0.0433) = log(1.564) = 0.447.  This number is positive, so there is conflict in 
the reports, as we expected. 

We note that the computation of data inconsistency can be done even when the model does not 
contain any explicit error variables.  This allows data inconsistency to be computed even when 
error models are not available. 

This measure of conflict only serves to indicate when there is a problem somewhere in the data.  
It doesn’t tell us which data item is problematic.  To pinpoint a faulty data item, we can use a 
modified version of the conflict measure, where now conflict is measured between two subsets 
of data items: 

conflict(D1 , D2) = log((Pr(D1)Pr(D2))/Pr(D1  ∪  D2)). 
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By combining this measure with the original conflict measure over sets of data items, we can 
obtain a better idea of where problematic data are located.  If, for example, conflict(D1) is 
negative and conflict(D2) is not, then a high value for conflict(D1 , D2) strongly indicates that the 
problem lies in  D2.  If D2 has only one element, then we have pinpointed the faulty data. 

This criterion was tested on several cases involving the BDA model. When a single report has a 
high degree of conflict with the remaining data items, it does indeed turn out that the degree of 
confidence in that report, as calculated using the error model, is low. 

4.2 DATA CONFIDENCE 

BDA_Report1
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

   0
   0
   0

 100

Target_Damage_GT
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

3.80
64.7
17.2
14.3

BDA_Report2
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

   0
 100
   0
   0  

Figure 7.  BDA model with BDA reports entered as evidence. 

To compute data confidence, we compare what is reported by an information source with the 
probability of the corresponding ground truth variable given all the available evidence.  So for 
example, when the only evidence we have is that pilot 1 has reported extensive damage and pilot 
2 has reported minimal damage, the Bayes net is updated as shown in Figure 7.  The Bayes net 
computes the posterior probability of the states of Target_Damage_GT given this evidence as 
shown above.  We see that the probability of MinimalDamage is 0.647 while the probability of 
ExtensiveDamage is only 0.143.  Our confidence that pilot 2 is right is therefore 0.647 and our 
confidence that pilot 1 is right is 0.143.  We therefore have a much lower confidence in the 
report of pilot 1 than in the report of pilot 2. 
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4.3 HYPOTHESIS CONFIDENCE 

Target_Damage_GT
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

4.15
64.0
24.9
7.00

BDA_Report1
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

   0
   0

 100
   0

BDA_Report2
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

   0
 100
   0
   0

Radar_Destroyed_Hyp
True
False

40.8
59.2

0.41 ± 0.49
 

Figure 8.  Initial evidence for "Radar Destroyed" hypothesis. 

Hypothesis confidence is a measure of how much a probabilistic hypothesis may be expected to 
change in the light of new evidence.  In the example shown in, two pieces of evidence have been 
entered into the Bayes net: a report of moderate damage from pilot 1 and a report of minimal 
damage from pilot 2.  The hypothesis of interest in this case is the assertion that the radar has 
been destroyed – the value of the variable Radar_Destroyed_Hyp = True.  Given the available 
evidence, the probability that the hypothesis is true is 0.408.   

Target_Damage_GT
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

6.01
78.9
12.5
2.57

BDA_Report1
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

   0
   0

 100
   0

BDA_Report2
NoDamage
MinimalDam...
ModerateDa...
ExtensiveDa...

   0
 100
   0
   0

Source_Reliability1
LowReliability
ModerateRe...
HighReliability
Infallible

81.3
14.6
4.14
   0

Source_Reliability2
LowReliability
ModerateRe...
HighReliability
Infallible

   0
8.07
89.9
2.00

Radar_Destroyed_Hyp
True
False

13.6
86.4

0.14 ± 0.34

ELNOT_Report1
True
False

 100
   0

EW_Radar_Operating_GT
True
False

81.5
18.5

 

Figure 9.  Probability of hypothesis changes with new evidence. 

How much confidence should we have in the estimate of 0.408 for the probability that the radar 
has been destroyed?  To answer that question, we look at other potential sources of evidence and 
see to what degree that probability would change if additional evidence were acquired.  For 
example, we might have a report from the ELNOT sensor.  If the sensor reported detecting a 
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signal (ELNOT_Report1 = True), then the probability that the radar was destroyed would change 
dramatically, from 0.408 to 0.136.  Clearly, then, the current probability of 0.408 is not very 
robust and we should not place a high degree of confidence in it. 

To compute hypothesis confidence, we divide the evidence variables up into two sets. A is the 
set of evidence variables to which assignments have been made (specific values have been 
entered for them).   U is the set of evidence variables to which no assignments have been made.  
This set represents variables for which evidence has not yet been acquired but might be.  Let e be 
the assignment of values that has been made to the variables in A.  e is the evidence acquired so 
far.  Let f be an arbitrary assignment of values to the variables in U.  f represents potential 
evidence (or evidence that might be acquired in the future).  We use assign(U) for the set of all 
assignments of values to the variables in U.  Then we define the volatility of the current 
probability of hypothesis h given evidence e by: 

assign(U)
( | ) | ( | ) ( | , ) |

f
P f e P h e P h f e

∈

−∑  

This computes the average difference between the probability of H given the current evidence 
and the probability of H given both current and potential future evidence, where the difference is 
weighted by the probability given the current evidence that we would obtain that potential 
evidence. 

Our confidence in a probabilistic hypothesis varies inversely with the volatility of the hypothesis.  
We may therefore define hypothesis confidence by: 

assign(U)
1 ( | ) | ( | ) ( | , ) |

f
P f e P h e P h f e

∈

− −∑  

4.4 VALUE OF INFORMATION 
If we have low confidence in a hypothesis or there is ambiguity regarding the data, we may wish 
to obtain further evidence to resolve the uncertainties.  We implemented two metrics for 
determining value of information.  One is a purely information-theoretic metric that measures the 
expected gain in information from querying an unassigned evidence variable; the other quantifies 
the benefit to decision making of additional information. 

The information-theoretic criterion for value of information says to choose as a query an 
evidence variable for which the mutual information between that evidence variable and the 
hypothesis variable is maximal.  Where H is an evidence variable and E is an evidence variable, 
the mutual information I(H ; E) between H and E is given by: 

Pr( , )log
Pr( ) Pr( )h H e E

h e
h e∈ ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑  

This is 0 if H and E are completely independent and positive if H and E are correlated. 

The second measure of value of information uses the criterion of expected utility to choose an 
evidence variable for querying.  Use of this criterion requires that we be able to specify a set of 
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decisions related to the hypothesis variable of interest and a utility or payoff for making a given 
decision for each value of the hypothesis variable. 

Table 1.  Utility matrix for decisions regarding radar hypothesis. 

  Accept Radar

Destroyed 

Reject Radar

Destroyed 

Radar 

Destroyed 10 -10 

Radar not 
Destroyed -100 0 

 

In the case of our BDA scenario, the hypothesis of interest is whether or not the enemy radar has 
been destroyed.  We can take the decisions to be decisions as to whether or not to accept the 
hypothesis that the radar has been destroyed.  A matrix showing the utility of each decision for 
each possible ground truth state is shown in 

Table 1.  Correct decisions have a higher utility than incorrect decisions.  The utility recorded 
here is overall utility, not just the increment to utility from making a given decision.  So the 
utility of accepting that the radar has been destroyed when it has been destroyed is higher than 
the utility of rejecting that the radar has been destroyed when it hasn’t been destroyed, because 
the former outcome is a better one overall than is the second one.  (We strongly prefer that the 
radar be destroyed.)  The worst possible outcome is that we mistakenly think the radar has been 
destroyed when it has not been destroyed. 

The numbers in the table above are for illustrative purposes only.  In a fielded system, a careful 
cost/benefit analysis would have to be done in consultation with subject matter experts to 
determine appropriate values for the table. 

Given the utility matrix, we can then define the expected utility criterion for value of information 
as follows.  As before, let H be the hypothesis variable and E an unassigned evidence variable.  
And let D be the set of decisions regarding the value of variable H.  For each value h of H and 
decision d in D, let U(h,d) be the utility of making d when h is the value of H.  Then the expected 
utility of querying variable E is given by: 

Pr( ) { Pr( | ) ( , )}max
d De E h H

e h e U h d
∈∈ ∈

∑ ∑  

The expected utility criterion says to choose for querying the variable E than maximizes the 
above function.   
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It will often happen that the information-theoretic and expected utility criteria for information 
value agree.  However, in experiments, we have found cases in which they disagree on which 
variable to query next. 

We note that the both value of information criteria are myopic.  That is, they only look at what 
the best variable to query would be if that were the only additional variable one could query.  
They do not consider the utility of querying sequences of variables. 

4.5 WEIGHT OF EVIDENCE 

Another data statistic useful in interpreting the evidence is which data items support the 
hypothesis (make it more probable) and which ones oppose it, and the degree to which they do 
so.  Data all of which strongly points in one direction should give us confidence in the hypothesis 
pointed to, but when there is equal evidence of equal weight pointing in different directions, we 
should be unsure what the correct hypothesis is.  Moreover, if a data item has negligible weight 
either for or against the hypothesis, then we may conclude that the source of that data is not 
informative with respect to hypotheses of that nature and ignore it or not consult it in the future. 

Let the evidence E be the set {e1, e2,..., en} (each ei is an assignment of a value to an evidence 
variable).  Where h is the hypothesis and not-h is the negation of the hypothesis (the assertion 
that the hypothesis variable does not have the value specified by h), we define the weight of 
evidence of ei for h by: 

Pr(e | h,E-{e})( , , ) log
Pr(e | not-h,E-{e})

weight e h E ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

This expression compares how likely the evidence e would be given the hypothesis and the rest 
of the evidence with its likelihood given the negation of the hypothesis and the rest of the 
evidence.  So weight of evidence for a piece of evidence is computed relative to what the rest of 
the evidence is.  When weight(e,h,E) > 0, e supports h in the context of E; when weight(e,h,E) < 
0, e opposes h in the context of E.   

4.6 ERROR MODELING 

This section describes modeling techniques for representing information source error that we 
developed in the course of the I2AT project.  These modeling techniques were tested on Netica 
models but were not fully exploited in our main BDA scenario model. 

To capture uncertainty about the error model for a given source, we make sources of error 
explicit variables in the Bayes net model and place a probability distribution over their values.  
An obvious example of this is to make the reliability of a source a variable with, for example, 
values “LowReliability,” “ModerateReliablility,” and so on, and to assign prior probabilities to 
these values.   This allows our degree of belief in the reliability of a given source to be modified 
by what other sources are reporting.  For example, we might initially consider it probable that a 
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particular source is highly reliable but change our opinion if the source is contradicted by 
multiple other sources that we believe to be highly reliable. 

Reliability, however, is not the only variable relevant to modeling source error. Bias is also 
important.  Reliability can be defined as the probability that the source will give a correct 
answer; bias, on the other hand, is a measure of the direction in which a source errs when the 
source does make an error.  Knowledge of the bias of a source can give us valuable information 
when we attempt to infer something from what the source reports.  Suppose, for example, a 
source tells us that damage to a certain target was minimal.  If we regarded this source as of low 
reliability, we wouldn’t get much information from this report.  The damage might actually be 
minimal but given the unreliability of the source, it might very well be more extensive or it might 
be none at all.  Suppose, however, that we also know that this source is biased in the direction of 
exaggerating damage.  We still think the source is not that reliable, but given our knowledge of 
the source’s bias, we can make a more precise inference that the damage to the target probably is 
minimal or is none at all. 

In addition to modeling bias, we investigated another kind of problem with data, namely, missing 
data.  Sometimes the fact that data is missing is completely uninformative – if the ELNOT sensor 
has not been activated and we know that, the fact that we have no report from it is no reason to 
revise our probabilities about whether the enemy radar is operating.  On the other hand, if we fail 
to receive a battle damage assessment from the pilot who dropped the bomb and we were 
expecting to receive one, that may indicate that the pilot has experience some kind of difficulty 
and we should decrease our confidence in his having successfully completed his mission. We 
discuss these new error modeling features in more detail below. 

Defining bias.   
Bias can be defined in a number of ways.  We will use the technical definition of “bias” in 
statistics.  Let X be a real-valued variable (this includes variables with integer values) and let Y 
represent an estimated value for X based on, e.g., a sensor measurement.  The bias of Y is 
defined to be E(Y – X), the expected difference between the value of Y and the value of X.  
From the definition of expectation, we have 

),()(

)()(

),(),(

))(,()(

XEYE

xdxxXPydyyYP

xdxdyyYxXPydxdyyYxXP

dxdyxyyYxXPXYE

−=

=−==

==−===

−===−

∫ ∫

∫ ∫∫ ∫

∫ ∫

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

 

where P(⋅) is a probability measure over the space X×Y. 

So the bias of a measurement variable Y with respect to a ground truth variable X is the 
difference between the mean of Y and the mean of X. 
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This definition of bias can be applied to binary variables (such as RadarOperating).  To do so, we 
represent the truth-value true as the numerical value 1 and the truth-value false as the value 0.  If, 
then, the radar is operating, we have RadarOperating = 1; otherwise, RadarOperating = 0.  A 
report variable ReportRadarOperating will have the value 1 if it is reported that the radar is 
operating and 0 otherwise.  In this case, we have 

 bias(ReportRadarOperating) = P(ReportRadarOperating = 1) – P(RadarOperating = 1). 
 

That is, the bias in the report is the difference in the prior probability of reporting that the radar is 
operating and the prior probability that the radar is operating.   

Error models with both reliability and bias.  Suppose we have some variable such as 
TargetDamage that can be associated with a numerical scale, say, 0 for no damage and 10 for 
complete destruction.  We can always rescale so that the values fall in the range [0,1] (e.g. the 
value of 1 corresponds to the value of 10 on the old scale, 0.3 to 3, and so on).  Then we may 
ask: given that the true value of TargetDamage is x, what is the probability that the source will 
report a value close to x?  More generally, can we specify a probability distribution for report 
values conditional on each value of TargetDamage? 

One way to do so is to express the conditional distribution for the report variable as a function of 
the TargetDamage value.  Given that TargetDamage = x,  the value of TargetDamageReport 
could be any value between 0 and 1, with values close to x being more probable the more 
reliable the source of TargetDamageReport is.  One way to express such a conditional 
distribution is through the Beta distribution, which is a parameterized probability distribution 
over the interval [0,1].  Where a, b  are the parameters of the Beta distribution, we define beta(y;  
a, b) for y in the interval [0,1] as 

11
),(

1 )1( −− − ba
baB yy  

B(a, b) is the Beta function and ensures that integration of beta(y;  a, b)  from 0 to 1 will yield 1 
(so that beta(y;  a, b)  is a genuine probability density function). 
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Figure 10.  Beta pdf for a = 15, b = 10. 
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Figure 11. Beta pdf for a  = 6, b = 4. 

Figure 10 and Figure 11 show two Beta distributions with different values of a and b.  The two 
distributions have the same mean: 0.6.  The mean of a Beta distribution is a/(a + b) and the 
variance monotonically increases as  a + b decreases.  Visual inspection of the two distributions 
verifies that the second distribution is much more spread out than the first.  If the two 
distributions represent the probability that a source will report a value y given a ground truth 
value of x*, then the source for the second distribution is more “erratic” than the source for the 
first.   

Each of the above Beta distributions represents the probability that the report variable Y will 
assume a certain value conditional on the ground truth variable having a particular value x*.  A 
model for generating such distributions above given a value x* of the ground truth variable X is 
as follows.  Fix the sum N = a + b.  Pick some number f such that -1 ≤  f ≤ 1  and determine a by: 
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Since the mean of a Beta distribution with parameters a, b is a/(a+b) or a/N, this definition entails 
that the mean of Y is given by: 
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we see that if f = 0, E(Y) = E(X) and Y will be an unbiased estimator of X in that case.  If f is 
negative E(Y) will be less than E(X) (unless P(X = 0) = 1), so Y will have a negative bias; 
similarly, if f is positive, E(Y) will exceed E(X) (unless P(X = 1) = 1) and Y will have a positive 
bias. 

We call f the bias factor.  If we set N = 25 and f = 0.2, we get the Beta distribution shown in 
Figure 10 for X = 0.5.  If we let N = 10 and keep f at the value 0.2, we get the Beta distribution 
shown in Figure 11 for X = 0.5.   

Note that the bias factor is not the bias.  If X is uniformly distributed over the interval [0,1], we 
can show that the bias of Y is f/2. 

Δ-reliability.  For any realistic error model, the probability that a report will give exactly the 
correct value for a continuous variable is zero.  Therefore, on the definition of reliability as the 
probability of giving a correct value, reports on continuous variables have zero reliability.  
Obviously, however, some measurements of continuous variables are more reliable than others in 
the sense of having a greater probability of coming close to the true value.  We therefore 
introduce the concept of Δ-reliability, which is the probability that a measurement will come 
within Δ of the true value.  If P(⋅) is a probability measure over the space X×Y (where X is a 
continuous ground truth variable and Y is a measurement of X, with both X and Y in the range 
[0,1]), we define the Δ-reliability of Y with respect to X by: 
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Independent error model variables.  A drawback to using reliability and bias as variables in 
modeling source error is that they are not independent variables.  That is, it is impossible for a 
source to have some bias and at the same time be perfectly reliable – bias implies unreliability.  
Ideally, we would like the variables used in modeling errors to be independent of one another, so 
that probability distributions over each can be independently specified.  Going back to the Beta 
distribution, we can see that the sum N = a + b can be specified independently of the bias factor f 
but that the two together determine the distribution for the report variable Y and hence determine 
the reliability and bias of Y.   A Beta distribution is often thought of as giving the probability of 
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a probability – i.e. given an event of unknown probability p and a sample of events a of which 
are instances of the event and b of which are not, what is the probability that p is a particular 
value in [0,1]?  On this interpretation, N = a + b is the size of the (imaginary) sample.  
Accordingly, we call variables for the value of N “sample size” or “SS” variables, for short.   

Discretizing sample size and bias.  Since Netica’s belief propagation algorithms work only for 
discrete variables with a finite number of values, we need to bin values of sample size and bias.  
We let the values of sample size be “very small,” “small,” “medium,” “large,” and “very large.”  
These values correspond to sample sizes of 4, 8, 16, 64, and 128, respectively.  Other sample 
sizes get thrown into a bin containing the nearest number in this sequence.  Similarly, the values 
of the bias variable are “LargeNegative,” “SmallNegative,” “None,” “SmallPositive,” and 
“LargePositive.” 

 

 

5 PREVIOUS WORK IN DATA VALIDATION 
Data validation work has been performed in database management. Human entry is typically the 
source of errors.  The data values, relations, and data relevance may be unknown, imprecise, or 
wildly inaccurate.  Data validation techniques often involve the forcing of hard constraints (such 
as constraining age to be a positive number), identifying outliers based on a specified statistical 
model, creating fuzzy rules, or attaching pedigree information on data [Parsons, 1996].  These 
approaches mostly target gross errors in collecting or entering data.  Such methods are well-
suited to relational data in which the scope of data dependencies is limited.  However, they may 
fail to notice improbable combinations of reasonably likely values (and even if it did, it might 
have difficulty determining which of the values are accurate).  

Count

0 10 20 30 40 50 60 70  

Figure 12.  Distribution of ages of terrorists. 

In the field of statistics, there are techniques for determining “outliers” or data points that appear 
anomalous in the light of the rest of the data or in the light of known distributions.  For example, 
assuming we know that the distribution of ages of terrorists is as given in Figure 12, we can say 
that the assertion that a particular terrorist’s age is 38 would be unsurprising whereas the 
assertion that his age is 60 would be quite surprising.  We might suspect a mistake, then, in a 
report in which a terrorist’s age is given as 60.  This technique can be extended to handle 
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multiple variables, but it suffers from the limitation that the joint distribution over the variables 
must be known.  Moreover, it is not clear how it would be extended to handle the complex 
relationships among discrete variables with which we deal in I2AT. 

There has been a great deal of work on data validation for sensor fusion (SF). This work is 
probably closest in spirit to our approach but differs in significant ways. This typically employs 
fixed, probabilistic noise models which are known a priori.  This approach is suited for fusing 
potentially inaccurate or missing data in a systematic manner.  It assumes that we have models 
for the types of errors made by the sensors, typically in the form of a specification of probability 
of detection and false alarm probability (probability of a false positive).  Differences from our 
approach include: 

• SF is not usually concerned with probability of error on individual sensor readings 
whereas we might be. 

• SF is usually based on fixed, engineered noise models whereas we want to allow both 
expertise and data to constrain noise models. 

• SF often combines information sources with domain-specific methods based on first-
principles engineering (e.g., for extracting distance from stereo disparity in two images) 
whereas we focus on domain-general methods. 

• SF focuses largely on combining information from multiple sensors of the same type 
whereas we want to accommodate heterogeneous information sources. 

Data validation work has been performed in law.  In particular, there is a long tradition of 
modeling human testimony probabilistically.  The field has spawned a significant amount of 
literature on reasoning about human testimony.  Human testimony can suffer from unintentional 
biases.  However, there does not appear to be a widely accepted method of modeling these biases 
[6]. 

 

6 LEARNING ERROR MODELS 
In this section, we present a method of testing our data validation framework.  We start by 
describing the learning algorithms.  Afterwards, we explain the testing framework.  We close the 
section by noting how our data validation approach would be applied in practice. 

6.1 LEARNING FRAMEWORK    
Before we discuss the testing, we need to talk about how we perform learning.  We focus on 
online, incremental learning algorithms which adjust the parameters as data comes in on a case 
by case basis.  Furthermore, our learning algorithms can handle incomplete training data.  The 
Voting EM (Expectation-Maximization) algorithm is one such algorithm [1].  Bayesian updating 
is another.    It is only applicable to variables which do not have parents in the graph.   

Each variable in a Bayes net is associated with a Conditional Probability Table (CPT) that gives 
the probability of each state of the variable conditional on each combination of states of its 
parent variables. When a variable has no parents, its CPT is simply an assignment of prior 
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probabilities to its states. The Voting EM algorithm allows us to learn the CPTs of the observed 
variables as well as other variables such as explicitly represented error variables.  It is also robust 
to fundamental changes in the model.  When we do not explicitly model errors and do not 
assume the observed variable’s modeled behavior is correct, we must use the Voting EM 
algorithm to learn the CPT for the observed variable.  Since these variables have parents, we can 
not apply Bayesian updating.   

Bayesian updating is an online, incremental approach which adjusts a CPT using Bayes’ rule.  
For our models, it can learn the distributions for error modes such as bias or effective sample size 
when these are explicitly represented in the model (and do not depend on other variables). It is 
incapable of learning the CPTs of observed variables since these have parent variables. 

In order to test our approach, we must have a BN model which is to accurately represent the 
behavior of the system. We also create a base model which is loosely related to the “true” model.  
The base model will have less informative CPTs and may include additional error variables.  
Learning is applied to the base model with training cases generated from the ground truth model 
as shown in Figure 13.  This adjusts the CPTs for the observed variables or error variables (such 
as bias and effective sample size).   

   

Figure 13. The Learning Process. 

We now discuss how we test the performance of the learned models.  To do so, we must have 
test cases simulated by the ground truth BN.  These cases may have some evidence nodes 
unfilled.  We define the parameter observability to be the probability that any given observation 
will have a value.  Thus observability influences how many of the values will be missing in the 
cases.  We now compute raw scores for the ground truth, base, and learned models using these 
cases as shown in Figure 14.  We describe the scoring algorithm in the next paragraph.  

We measure success in terms of how accurate the inference is to the correct value of the 
hypothesis of interest.  For this example, the hypothesis of interest is whether the facility has 
power.  If the result of updating the model were either a definite “Power On” or “Power Off” 
conclusion, then we could count up the number of cases in which the correct answer was 
obtained and take the proportion of right answers out of all answers as the average accuracy of 
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the inference.  However, the result of updating is typically not a definite value, but rather 
probabilities for its values.  We can give “partial credit” in such a situation.  If, for example, 
updating on the evidence results in a probability of 0.9 for “Facility Power = Power On” and the 
facility has power, then we say that the answer is 90% accurate or accurate to degree 0.9.  If, 
instead, the facility has no power, then the accuracy of the answer is 1 – 0.9 or 0.1.  In this way, 
by assigning partial degrees of accuracy to updates, we can sum up these partial degrees of 
accuracy and arrive at an average partial accuracy.   This provides us with an average raw score 
for a model.   

To score the learned model, we compute a relative score as shown in Figure 14 – namely the 
progress from the base model to the learned model with respect to the ground truth model.  Thus 
if the base model has a raw score of 0.6, the learned model has a raw score of 0.77, and the 
ground truth model has a raw score of 0.8, then the score of the learned model 

is 85.0
6.08.0
6.077.0
=

−
− .   

 

 

Figure 14. Testing (and Scoring) the Learned Model. 

Note that when we are applying (as opposed to testing) our data validation methodology, we 
construct a model using expert knowledge (if available) that captures the system as accurately as 
we can.  We then perform learning on it if training data is available.  The result will be a learned 
model which we can use for data validation.  If independent test data is available, we can 
compare the raw scores of the original model and the learned model to measure the improved 
predictive ability of the learned model. 
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6.2 RESULTS 

To test the validation frameworks, we created several BNs with different types of error models.  
Some had a variable for reliability where as others had effective sample size and bias.  We 
extend our model it by adding error models and additional reports.  For the extended model, we 
add an additional (independent) damage report for the facility.  Also we add three additional 
reports for each of the sensors that detect whether the facility has power.  The four readings from 
each sensor are gathered consecutively in a short span of time.  We also added error models.  
Each sensor at each time period may be functional or non-functional – this is captured by the 
“sensor mode” error variables.  Each of the damage reports has a reliability variable which 
indicates the accuracy of the source.  For the complete model, see Figure 15.    

 

 

Figure 15.  Model for Testing Data Validation Framework. 

For the network depicted in Figure 15, we generated a number of training cases with certain 
percentages of the observations missing.  We learned three models – one using 100 training 
cases, one using 500 training cases, and another using 1000 training cases.  We show the 
performance of the Voting EM algorithm in Figure 16.  Note that even when the observability is 
low, the algorithm performs extremely well given enough training cases.   
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Figure 16.  Performance of Voting EM Algorithm on Test Model. 

Using a model very similar to the one in Figure 15, we compared the scores using Bayesian 
updating and the Voting EM algorithm.  The training cases were 50% observable.  In this test, 
Bayesian updating does very well – it has approximately the same predictive ability as the true 
model after about 100 training cases.  It clearly outperforms the Voting EM algorithm.  
However, one must bear in mind that the Voting EM algorithm can also learn the CPTs for 
observation nodes whereas Bayesian updating is unable to do this.  In addition, the raw score for 
the base model was 0.7 and the raw score for the ground truth model was 0.77.  In other words, 
the difference between the ground truth and base models was not too large to begin with. 

Table 2.  Performance of Adaptive Learning vs. Bayesian Updating 

 Improvement from 
baseline 

Training Set 
Size 

Voting 
EM 

Bayesian 
Updating 

20 24% 58% 
100 26% 91% 
500 28% 100% 
1000 38% 95% 
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In some of our tests, the learned models have scores of 100% or greater.  We believe this is 
because most of the generated cases have few or no observation errors.  For these cases, the 
learned model outperforms the true model.  However, for those cases with more observation 
errors, the true model outperforms the learned model. 

To test bias and effective sample size learning, we took the model in Figure 15 and introduced 
bias in the system reports (in the true model).  The bias was introduced within the CPTs for the 
system reports and not with explicit bias variables.  We then created a base model with bias and 
effective sample size variables which were learned using the Voting EM algorithm.  We show 
the scores in Table 3.  These results are very promising.  Note that the model learned from only 
100 cases performs very well. 

Table 3.  Performance of Model with Bias and Effective Sample Size Error Models 

 Observability 
Training 

Set Size 
25% 50% 75% 100% 

100 73% 90% 90% 93% 
500 99% 100% 99% 99% 
1000 102% 101% 101% 100% 

7 I2AT INTERFACE 
The I2AT interface was designed with two major points in mind.  The first was to clearly display 
the information generated by the I2AT application, and the second was to make data entry 
simple.  
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Figure 17. I2AT User Interface 

To achieve these goals, the main I2AT window is separated into three major components as in 
Figure 17.  The frame on the left is the data input area.  The top right frame is the data display 
area and the bottom right area is the data graph. 
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Figure 18. Data Input Frame 

The data input frame (Figure 18) presents nodes to the user based on node type.  The node types 
displayed are hypothesis, report, and error nodes.  When a node is selected, a new window pops 
up, based on the node type.  For hypothesis nodes, the hypothesis selection window is opened 
(Figure 19).  In this window, the user can choose to make the selected node the active 
hypothesis.  All data for the model will then be recalculated with respect to the new hypothesis. 

 

 

Figure 19. Hypothesis Selection Window 

For a report or error node, the data input window is opened (Figure 20).  This window has 
multiple values that can be set.  The user is required to select a node state before it can be entered 
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into the model.  Optionally, the user can also set the date and time this value was received.  If no 
value is entered into the date and time fields, the current time is used. 

 

 

Figure 20. Value Input Window 

 

 

Figure 21. Data Display Frame 

The data display frame (Figure 21) is used to disseminate information about the model.  There 
are two major types of data.  The first are model wide values calculated with respect to the 
currently selected hypothesis.  The second is node specific data.  The node specific data is 
segregated into tables based on the node’s effect on the hypothesis.  Nodes in the Supporting 
Data column support the current hypothesis, while nodes in the Opposing Data column do not.  
The information in this frame is updated anytime new data is entered into the model. 
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Figure 22. Data Graph 

The graph frame (Figure 22) is used to graph the changes in model wide values over time.  It is 
redrawn when new information is input.  The graph displays the change in model wide 
calculations over time. 

 

8 REASONING ACROSS SCENARIOS 

One problem with using a single scenario model is that no information determined by the model 
is preserved.  While report values, and the probability of the hypothesis do not have meaning 
outside of the singular scenario, the derived values of error nodes can have meaning.  For 
example, in our radar attack model, if we believe that a sensor is malfunctioning in one scenario, 
this belief would be useful in the next scenario involving the same sensor.  (For example, in a 
different scenario in which a different target is attacked but the same sensors from a previous 
attack were employed.) A set of scenarios like this, with the same report sources, is called a 
sequence.  The use of sequences creates more accurate hypothesis beliefs. 
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Figure 23.  Large Model Approach. 

A simple approach to modeling a sequence would be to build networks with multiple scenarios 
(Figure 23).  This would link error values between scenarios.  This link would allow error nodes 
to take into account past and future error beliefs, and generate more accurate predictions.  
However, this approach has two major problems.  First, the models used to do this would need to 
be large enough and complex enough to model all possible sequences.  Second, due to their 
larger size, I2AT would perform significantly worse. 
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Figure 24. I2AT Approach 

To get around these limitations, I2AT uses a different approach.  Instead of using one large 
network, I2AT models can have special nodes that are used to propagate past error values into 
the new scenario (Figure 24).  This propagation allows for the historical error values to affect the 
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current scenario while preserving the smaller network sizes.  The downside is that past scenarios 
are not affected by newer information. 

Another feature of this approach is information can be shared between related models.  If two 
models have the same error nodes and nodesets, the information copied into a new scenario will 
be the most recent, independent of which model generated the information.  This can allow for 
collaborative models to be created. 

 

Figure 25. Pre Sequence Threat of War 

The effects of this system can be observed in I2AT by creating a scenario, and seeing the 
difference in values if it is part of a scenario sequence.  Figure 25 shows a scenario using the 
Threat of War model, without any error history considered.  The probability of the hypothesis 
being true is only 0.214. 
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Figure 26.  Asset Reliability 

If other past scenarios are considered, our belief in the reliability of some sources may change.  
Figure 26 displays how evidence from past scenarios has led I2AT to believe that the Asset 
Reliability is untrustworthy. 
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Figure 27.  Threat of War scenario with error propagation. 

If the scenario used in Figure 25 is reloaded with our asset reliability lowered, I2AT determines a 
different set of beliefs.  The hypotheses value in Figure 27 has changed to 0.655, despite 
identical report values from the first scenario.  This shows how I2AT, using past error values, 
can evaluate data more accurately, while still minimizing model sizes. 

 

9 APPLYING I2AT TO WEB-BASED DATA VALIDATION 

9.1 OPEN SOURCE INFORMATION GATHERING 

Previous work has focused on data validation through the modeling of information sources.  This 
is a “push” model of data validation, since we assume that the information sources are known 
and have provided the interpretation system with their input.  Another approach to data 
validation is a “pull” approach in which potentially new information sources are sought out in 
order to assess data provided by some known source.  Increasingly, web-based information 
sources are providing value open-source information to the intelligence community, due to the 
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explosion of information on the Web in the form of blogs, traditional news outlets, and 
propaganda and disinformation sites (which can actually provide useful information if their bias 
and motivations are known).  In November 2005, the Open Source Intelligence Center was 
opened at CIA headquarters with the mission to exploit such non-traditional information sources. 

The potential value of open source information is limited, however, by the vast sea of irrelevant 
information in which it swims, making it impossible to manually extract and examine all 
potentially relevant items of information.   We need a system that is able to automatically detect 
relevant sources of information and use those sources to assess the validity of data.  To that end, 
we have prototyped a system, whimsically called “Doctor Knowledge” that searches the Web for 
information about a particular claim and uses the results to assess the validity of the claim. 

9.2 WEB-BASED DATA VALIDATION 

Search Web

Filter Results
Update Bayes Net

query Web sites & 
web pages

Web sites & 
web pages

hits

Trusted sitesTrusted sites

Filtered ResultsFiltered Results

Display Filtered
Results

 

Figure 28.  System architecture for web-based data validation. 

Figure 28 shows the architecture for Doctor Knowledge.  The user enters a query concerning 
some data item which he wants validated (e.g. “Osama bin Laden has been captured”).  The 
query is entered into some standard web search engine such as Google and results are returned.  
A list of modeled sites is maintained by the system and the pages returned by the query that are 
not associated with any of the modeled sites are filtered out.  The remaining results are analyzed 
and used to update a Bayesian network.  The Bayesian network models what sort of information 
is found on different types of sites and how reliable those sites are.  For example, simply 
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knowing that a claim is discussed on a reliable hoax debunking website is evidence that the claim 
is false.  In some cases, the actual content of the website can be extracted, providing more 
specific information about whether it is asserting the claim to be true or false, or is taking no 
position.  

 

Figure 29.  Web pages returned by Dr. Knowledge. 

As shown in Figure 29, the web pages returned are displayed as clickable links so that the user 
can see their contents if he or she so desired.  Based on the types of websites found, Doctor 
Knowledge makes a preliminary estimate of the probability of the entered claim.  In this case, 
because all the returned links are for “hoax-busting” websites, the claim is deemed very 
improbable.   If the user does not wish to investigate all the returned links, the user can ask for a 
recommendation for a subset of links that are likely to be most informative about the claim in 
question. This is determined from a computation of the expected information gain for each 
returned page. 
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Figure 30.  Entering a variable value in Dr. Knowledge. 

After extracting the content of particular web pages, the user can enter the information learned 
directly into the Bayes net.  To do so, he or she selects the appropriate variable from the list on 
the left and a window pops up in which the user can enter the value corresponding to the learned 
information.  In this case, we suppose that the user has gone to the Snopes site and determined 
that it does indeed assert that the claim in question is false. 
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Figure 31.  Updated probability of claim. 

The value entered causes the Bayes net to update its probabilities and the new probability of the 
claim is displayed. 

In order to achieve a reasonable level of performance, we trained the Bayesian network model.  
To start this process, we identified the type of each website (for example, "urban legend 
debunker" or "news").  This information was used to establish preliminary parameter estimates.  
These determined the degree to which a search hit for a website suggests a claim is true.      

We scoured the web for various claims -- some true, some false.  These were fed into Netica's 
training algorithm to fine tune the parameters of the model.  Since the size of the training set was 
relatively small, we employed a smoothing technique to reduce over fitting.  To this end, we first 
identified clusters of similar probability tables in the network.  The smoothing then took each 
element in a cluster and moved it closer to the cluster center.  Finally, we validated the resulting 
model to ensure that the resulting model was acceptable. 
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9.3 LIMITATIONS OF DR. KNOWLEDGE 

Our experiment with web-based data validation was fruitful in that it revealed significant 
potential for automating data validation and information collection over the web.  At the same 
time, it revealed serious limitations to what can be done with current technology.  The most 
serious limitation, not surprisingly, is the limited ability to extract content from web pages.  Dr. 
Knowledge has limited content extraction capabilities, confined to a small number of web sites 
containing known structure.  For the most part, Dr. Knowledge does not rely on the content of a 
web site to determine the validity of an assertion but only on the nature of the web site (e.g. hoax 
exposing web sites generally – but not always – discuss claims that are false).   

To realize the full potential of Dr. Knowledge, it would have to be integrated with a system for 
content extraction.  Moreover, the content would have to be translated into assignments over 
variables in a Bayes net.  Unfortunately, current content extraction technology is still very much 
in the research stage and translation of content into formal representations is far in the future 
except for structured sources whose semantics is known. 

Another limitation of Dr. Knowledge stems from the querying mechanism, which searches for 
exact matches to the string entered.  Ideally, we would like to search for web pages that are 
relevant to the content of the query.  This is the content extraction problem from another angle 
and so  its solution awaits advances in content extraction technology.  

10 MODELING COLLABORATIVE INTELLIGENCE ANALYSIS 

10.1 WMD EXAMPLE 

The Netica file WMD_Nonprolif.dne contains a Bayes Network causal graph model of a WMD 
nonproliferation intelligence analysis problem. The node outline is shown in Figure 32 and the 
full model with probabilities is shown in Figure 33. The model examines two questions: 

1. Given reports from various intelligence sources, what is the probability that the adversary 
has an active military nuclear program?  Thus one hypothesis node is called 
Has_Mil_Nuclear_Program, with a value of true or false. 

2. Given reports from various intelligence sources, what is the probability that the adversary 
has a functional nuclear weapon?  The other hypothesis node is called 
Has_Nuclear_Weapon, with a value of true or false. 
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Figure 32. Nodes of WMD Nonproliferation Bayes net model 
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Figure 33. States and Probabilities of WMD Nonproliferation Bayes net model 
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Hypothesis of Military Nuclear Program  

Many pieces of ground truth information influence our belief that Red has a military nuclear 
program, but may only indicate that Red has a legitimate civilian nuclear program.  Having a 
civilian nuclear program, however, does greatly increase the likelihood that Red also seeks 
military nuclear technology.  These factors are: 

• The current unmet power consumption needs of Red’s economy (node Power_Needs).  
Red’s economy may have Insufficient Power (power needs greatly overwhelm 
generation capacity), Marginal Power (power needs are growing about the same rate as 
Red’s generation capacity growth), or Sufficient Power (power generation capacity 
exceeds economic needs).  If Red has insufficient or marginal power, it is more likely 
that Red will have a legitimate civil nuclear power program and be securing contracts for 
the construction of nuclear power plants (node Contracts_For_New_Reactors). 

• Red’s current geopolitical security status (node Security_Status).  Red may believe, in 
increasing order of security, that Red is Threatened (one or more hostile nations), 
Rivalrous (one or more rivals for regional or global status), Peaceful, or Allied (depends 
on US for a collective security arrangement).  Decreased security status increases the 
likelihood that Red seeks military nuclear technology.  

The four states in this node are mapped to three states for the ground truth node 
(Security_Status_GT). This is required because the report node Diplomatic_Rhetoric contains 
only three states, and the report and ground truth nodes must match in number of states. The 
third state (Conciliatory) in both nodes (Security_Status_GT and Diplomatic_Rhetoric) is 
presumed to map equally to the last two states (Peaceful, and Allied) in node Security_Status. 

• Red’s military involvement in the countries nuclear activities (node 
Military_Involved_In_Program).  If Red is using the military to provide security for 
nuclear facilities, using military bases to house nuclear research, or has some military 
personnel involved in nuclear program oversight, Red may be concealing military 
interests in nuclear technology. 

• Red’s contracts with international companies to build nuclear power reactors.  Depending 
on the scale of these contracts relative to Red’s power needs, this could indicate interest 
in military nuclear applications. 

• The legitimacy of Red’s nuclear activities (node Nuclear_Activities_Legit).  Red’s 
acquisition of nuclear technology may or may not be in accordance with relevant export 
control laws and commitments to the Nuclear Nonproliferation Treaty (NPT). 

• Red’s seeking advanced technologies for weaponizing nuclear materials, such as uranium 
enrichment via centrifuge, or plutonium reprocessing (node Seeks_Weaponization_Tech).  
Red may be strongly, weakly, or not seeking such technologies. 

• The existence of a long range missile program (node Has_LR_Missile_Program).  Since 
long range missiles are a crucial means for effective delivery of nuclear weapons, the 
existence of such a program may indicate that Red’s nuclear interests are of a military 
nature. 
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Since we do not have access to the ground truth, we rely on intel reports to help us infer our 
hypothesis:  

• Red’s power needs and public contracts for nuclear reactors are reported by nuclear 
energy industry trade journals (node Trade_Journal_Rpt and Trade_Journal_Rpt2).  
Trade journals have varying reputations: highly reliable Journals of Record, more 
speculative Investigative journals, and less reliable journals that tend to circulate rumors 
to scoop competitors. 

• Red’s subjective estimates of security status are inferred from analysis of his diplomatic 
rhetoric (node Diplomatic_Rhetoric) – whether it is Hostile, Assertive, or Conciliatory.  
Red is more likely to respond with more hostile or assertive rhetoric if insecure, and more 
conciliatory if secure.  However, Red’s rhetorical posture influences how we might 
understand his rhetoric – Red may be Clear, Posturing, Obscure, or deliberately 
Misleading. 

• In this model, we have a HUMINT asset in place that can inform us about military 
involvement with nuclear programs (node HUMINT_Report).  This asset’s information is 
more or less reliable depending on whether he is well-placed, marginalized, or simply 
untrustworthy. 

• We detect possibly illegitimate nuclear activities through an IAEA Inspection Report.  
However, the degree to which we believe this report depends on the level of access we 
believe the inspection team had to Red’s facilities.  In fact, the more Red has to hide, the 
more likely it is that inspection teams will not have full access, which decreases our 
confidence in this report. 

• We detect Red’s attempts to secure weaponization technologies through Customs 
Reports, which may reveal a clearly illegal import, a questionable import, or legal 
imports only.   However, customs officials may have varying degrees of reliability, 
depending on whether they are Honest, have a Conflict of Interest, or are actually 
compromised by Red. 

• Evidence of a long range missile program is provided by a Test Launch Detection.  The 
reliability of the detection is determined by the state of our launch detection sensor suite, 
which may be functioning or Malfunctioning. 

Hypothesis of Producing a Nuclear Weapon  

If Red has a military nuclear program, Red may have produced a nuclear weapon (in this model, 
Red cannot have a nuclear weapon without a military nuclear program). 

One piece of ground truth information influences our belief in whether Red has a nuclear weapon 
– whether Red has constructed a test site whether a nuclear weapon can be exploded (node 
Test_Site_Prep).  If Red has a nuclear weapon, Red may construct a test site, but will not 
construct a test site if he does not have a weapon.  We do not have access to the ground truth, so 
we rely on reports from satellite imagery to detect the existence of a test site (node 
Sat_Imagery_Report).  In our model, the satellite imagery may be ambiguous depending on the 
satellite viewing conditions, such as weather.  The node Sat_Conditions has values Good, Fair, 
or Poor, in order of decreasing reliability of whether a satellite image contains an identifiable test 
site. 
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10.2 THREAT OF WAR EXAMPLE 

The Netica file Threat_of_War.dne contains a Bayes Network causal graph model of a 
intelligence analysis problem where analysts are trying to determine the likelihood that Country 
A (Aggressor) will go to war with Country V (Victim). The model is shown in simplified form 
in and in full form displaying states and probabilities in . 

The causal network is primarily intended to be used to answer the questions Given reports from 
various intelligence sources, what is the probability that A will invade V?  Thus one hypothesis 
node is called A_Will_Invade_V, with a value of true or false. Several ground truth facts might 
cause A to invade V: 

• A’s military capability relative to V (node A_Military_Capability), which may be 
stronger than V, have parity with V, or be weaker than V.  The stronger A’s military 
relative to V, the more likely it is that A might invade V. 

• A might have an ethnic motive to invade V (node A_Ethnic_Motive).  If so, two states 
influence whether A might have an ethnic motive.  First, V may or may not have an 
ethnic minority (node V_Has_Ethnic_Minority).  Second, there might be domestic unrest 
in V (node V_Has_Domestic_Unrest).  This unrest may be Open, Submerged, or 
nonexistent.  If both of these factors hold, then A might invade V to support a related 
ethnic minority uprising in V. 
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Figure 34. Threat of War Bayes net model 
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Figure 35. Threat of War Bayes net model with states and probabilities 
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The ground truth node V_Has_Domestic_Unrest is mapped to a binary version of the same node, 
called V_Domestic_Unrest_binary in order to match the number of node states with the report 
from intelligence analysis (node Intel_Analysis_Domestic_Unrest) which contains two states: 
true, and false.  

• A might have an oil motive to invade V (node A_Oil_Motive).  If so, two states influence 
whether A might have an oil motive.  First, A’s economy might have unmet power 
consumption needs.  Thus node A_Power_Needs can take on values of insufficient power 
generation capacity (power needs greatly overmatch generation), marginal capacity 
(power needs are growing about the same rate as Red’s economic growth), or sufficient 
capacity (power generation has enough slack to accommodate growth).  Further, V might 
have oil reserves, thus node V_Has_Oil may take on the values Large Reserves, Small 
Reserves, or None.  If A’s need for oil is matched by V’s available reserves, then A might 
invade V to appropriate V’s oil resources. 

Many pieces of ground truth information further influence our belief that A is preparing to 
invade V.  These facts are: 

• A generates diplomatic rhetoric in the node A_Diplomatic_Rhetoric. This rhetoric is 
reflective of their ethnic motive to invade, greater motive leads to greater degrees of 
rhetoric (aggressive). 

• A develops a casus belli.  Through diplomatic statements, A is laying groundwork to 
legitimize an imminent invasion of V to the world community or to its population.  The 
node A_Develops_Casus_Belli may have the values Legitimate, Contrived, or None. 

• A withdraws diplomatic staff from its embassy and other posts in V (node 
A_Withdraws_Dip_Staff).  This act is usually taken as a sign of imminent conflict. 

• A mobilizes its military forces (node A_Mobilizes_Military).  There are varying degrees 
of mobilization or readiness level for A. In decreasing order, these are moving troops to 
V’s border, placing all forces on high alert but not moving them, placing some special 
forces on alert (Targeted Alert), or normal readiness. 

Since we do not have access to the ground truth, we rely on intel reports to help us infer our 
hypothesis:  

• Reports that might inform us about an oil motive for A derive from trade journal reports.  
A’s power needs and V’s oil reserves are reported publicly by energy industry trade 
journals (nodes Trade_Journal_Power and Trade_Journal_Oil).  Trade journals have 
varying reputations: highly reliable Journals of Record, more speculative Investigative 
journals, and less reliable journals that tend to circulate rumors to scoop competitors.  
(Note: This report source is intended to be the same in the WMD and War models to 
demonstrate propagation of source reliability across intel efforts.) 

• Reports that might inform us about an ethnic motive for A, or in general reveal A’s 
development of a casus belli, derive from analysis of A’s diplomatic rhetoric.  A’s 
diplomatic rhetoric (node Diplomatic_Rhetoric_Report) about ethnic concerns in V can 
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be Aggressive, Moderate, or Calm, in decreasing order of concern.  A’s casus belli 
rhetoric (node Casus_Belli_Report) can be Aggressive, Moderate, or Calm.  A is more 
likely to be planning to invade the higher the level of concern in the rhetoric.  However, 
A’s rhetorical posture influences how we might understand his rhetoric – he may be 
Clear, Posturing, Obscure, or deliberately Misleading.  (Note: This report source is 
intended to be the same in the WMD and War models to demonstrate propagation of 
source reliability across intel efforts.) 

• In this model, we have a HUMINT asset in place that can inform us about military 
mobilization (node HUMINT_Mil_Mobilize_Analysis) and withdrawal of diplomatic staff 
(node HUMINT_Dip_Staff_Analysis).  This asset’s information is more or less reliable 
depending on whether he is well-placed, marginalized, or simply untrustworthy.  (Note: 
This report source is intended to be the same in the WMD and War models to 
demonstrate propagation of source reliability across intel efforts.) 

• We assess A’s military capabilities relative to V and V’s state of domestic unrest through 
intelligence analysis (nodes Intel_Analysis_Mil_Capability and 
Intel_Analysis_Domestic_Unrest).  The reliability of intel conclusions is directly related 
to the experience level of the intel analysts.  Intel analysts can be Novice, Experienced, or 
Expert. 

 

 

11 EXTENSIONS TO I2AT 
This section describes ways of extending I2AT and integrating it with other decision support 
systems 

11.1 CAUSAL REASONING WITH JCAT 

Dr. John Lemmer of AFRL Rome has managed the development of a tool named JCAT, which is 
an evolution of a Bayesian Network analysis tool developed at Alphatech (now BAE AIT). BAE 
maintains a codebase for this original implementation, called the Operational Assessment Tool 
(OAT).  

JCAT/OAT enables construction of node-link networks that display probabilities of node states 
given the causal factors influencing that node. OAT uses nodes as actions (or effects) that take 
on certain values (or states), and links among the nodes to signify causal relationships. These 
links contain probabilities and a sign: positive (enhancing) or negative (inhibiting). For example, 
Node1 might cause Node2 through positive link with influence probability p=0.6.  

JCAT/OAT can run these models over time, giving a temporal representation of the evolution of 
probabilities of the nodes. Links that cause or inhibit nodes can also contain delays (once started, 
delayed in influencing the effect node for a period of time), and links can be persistent (once 
started, continue acting for a period of time). 
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The major advantage of JCAT/OAT is the support given to a user (modeler) in constructing 
probabilistic causal models. The user does not enter Conditional Probability Tables (CPTs) as 
they would when specifying Bayesian networks. Instead the user enters probability values for 
nodes and influence values for links. The software essentially generates the CPTs from this 
information. In addition, JCAT/OAT contains mechanisms that allow a temporal representation, 
including stepping through time (simulation), Monte Carlo sampling at a time point, and delays 
and persistence that allow causes to maintain (or delay) the influence for some time period.  

JCAT/OAT Extensions to I2AT 

Two extensions to I2AT would support better modeling using existing tools – JCAT/OAT.  

• Probabilistic Causal Modeling (PCM) tool to support causal model building, and export 
of resulting model for I2AT data analysis 

• I2AT data and evidence statistics exported into the PCM tool 
The first extension to leverage I2AT assessment and analysis would be the development or 
modification of a tool to enable modelers to build causal models in the style of JCAT/OAT, and 
have these save down to Bayesian networks with full CPTs that are accessible by the I2AT 
algorithms. One motivation for providing this capability is to enable easier data and evidence 
entry through causal model building, rather than through Bayes net model building with the 
requirement of entering full Conditional Probability Tables. Another motivation is the lack of 
data validation tools within OAT itself. Some versions of JCAT/OAT have contained Bayes 
evidence comparison tools; however they have not covered the range of capabilities of the I2AT 
algorithms.  

The second extension would enable I2AT to export data back into the PCM tool to update the 
current causal probabilities or states with better values determined by I2AT. 

11.2 JOINT DATA/MODEL VALIDATION 

I2AT provides data validation and data interpretation and analysis.  Its primary focus is 
determining whether data used in the model are correct.  However, the model itself might be 
wrong. The model is a modeler’s hypothesis of the situation (evidence of relationships among 
nodes) given his/her knowledge of the world or knowledge gained from other sources (SMEs / 
other experts / open source / closed source, etc.) and is subject to mistakes in the source of model 
information and in translation of that information into a formal model.  

So another I2AT extension would be a support tool that helped a modeler develop an accurate, 
proper, “valid” model of the situation. This extension would be supported by Bayesian inference 
algorithms that helped produce statistics for likelihood of certain structures over other structures.  

For example, we might have two structures that contradicted each other, or at least were 
fundamentally different in their assumed causality, and we wish to know which structure is 
holding up best to the situation, given various evidence we find about the real world.  

A → B   or C → B  ? 

A → C → B or A → D → B ? 
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Which structure is correct? Can we use evidence and confidence on evidence to select one or 
another of these assumed (hypothesized) structures? 

Or, given A → B ← C , are both A and C really influential to B? Or can one of them be shown to 
be unimportant, or simply not true (not connected)? 

The CPTs of a Bayesian network state assumption about the influence of one or more variables 
on another variable. So our current I2AT algorithms might easily answer this. What we haven’t 
talked about is a way to inform the modeler so that they might drop a node or edge from the 
model. As models get refined and evolve, modelers remove as well as add structure. If C is 
initially believed to be influential (say p = 0.3) but is shown to be hardly there at all (p = 
0.0000001), then the modeler might wish to remove C from the model. 

Another possibility for research is into automated searches (optimize/sensitivity testing) that look 
for nodes which have very little influence over outcomes, even if their probabilities of 
occurrence are large or change radically over time.  

11.3 TIME-DEPENDENT VALIDATION SCHEMES 

The scenarios considered in I2AT have so far concerned relatively static situations – e.g. whether 
a particular radar is operating, whether a country has a nuclear weapons program.  One extension 
of I2AT would be to look at data about ground truth states that vary over time and exploit 
temporal correlations to determine data/model validity.  

Data from different nodes that are temporally highly-correlated indicate (or allow inference) that 
the nodes are somehow connected. Likewise, time-series data displays actual node behavior 
(evidence) and if a parent node is changing value or state (with a high degree of certainty), then 
child nodes would be expected to change also. Time-series or other correlations might show that 
structure or connection between nodes is likely, or unlikely, and thereby provide additional 
evidence for the values in the CPTs (or the causal probability links in JCAT/OAT).  

11.4 OPEN SOURCE INFORMATION GATHERING 
Our experiment with web-based data validation (“Dr. Knowledge”) showed the need for some 
form of content extraction or analysis in order to achieve satisfactory levels of performance.  
Augmenting Dr. Knowledge with content extraction and analysis capabilities, even if imperfect, 
would significantly increase the accuracy of its results.  We could, for example, integrate the 
open source document classification and information extraction tool MALLET [7] into Dr. 
Knowledge.  MALLET could facilitate Dr. Knowledge’s reasoning in several ways.  First, it 
could help to determine the relevancy of a web site to the given query; second, it could help 
classify a previously unknown web site; and third, it could perform some limited content 
extraction that could indicate the attitude of a web site document to the query.   

Another approach to extending Dr. Knowledge would be to make use of the type of information 
collected by the “Dark Web” project at the University of Arizona [8].  This project collects 
statistics concerning terrorist web sites.  The statistics collected include clustering of sites based 
on which sites link to other sites, some content extraction, classification of sites in terms of level 
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of hate or advocacy of violence, and ideology.  This information could be used by Dr. 
Knowledge to determine the relevance and reliability of a web site for a particular query as well 
as whether claims made on multiple web sites are made independently or are possibly simply 
passed from one web site to another.  All these factors affect the way in which evidence about 
web site relevance and content should impact the probability of a claim. 
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13 APPENDIX: MODEL CONSTRAINTS 

13.1 NODE TYPE CONSTRAINTS 
Nodes in I2AT models should consist of several different types.  Each of the types is essential to 
the operation of the application, and need to be present for calculations to work. 

Hypothesis nodes are nodes that contain a true/false hypothesis about the state of the model.  For 
example, on the default FEBO model, the hypothesis is that the radar is destroyed.  While I2AT 
supports multiple hypothesis nodes in a single model, all hypothesis nodes must only contain two 
values, true and false. 
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Ground Truth nodes are nodes that represent actual real world values.  These nodes are not 
presented in the I2AT application, as the model assumes that these values are not known to the 
observer, but only inferred from reports. 

Report nodes represent observations or other information the model needs to consider.  I2AT 
uses these values to infer the values of the ground truth nodes. 

An error node represents a measure of the accuracy of the associated report node.  It can be a 
reliability value, a sensor state value, or any other measure of performance. 

The model can have non typed nodes; however these nodes are hidden and not accessible from 
the I2AT application.  Non typed nodes can be used to add additional complexity to the model. 

13.2 METADATA REQUIREMENTS 
Additional information about the nodes is needed by I2AT to successfully operate.  These data 
items are stored as UserData in the Netica model.  Each UserData item has a label and a value.  
We will discuss each label I2AT needs, the values it can take, and if the label is required or 
optional. 

The first label is “Type”.  This label is used to identify the node type.  The recognized types are 
“gt” for ground truth nodes, “hyp” for hypothesis nodes, “report” for report nodes, and “error” 
for error nodes.  If there is no Type data for a node, it is untyped. 

The second label is “NodeSet”.  A NodeSet is a collection of related nodes.  All nodes in the 
NodeSet are required to have the same set of state values.  All error nodes must belong to a 
nodeset. 

The third label is “Pre”.  This label is used to mark a node as a posterior error node.  These 
special nodes are used to propagate error information from past scenarios. The node marked with 
pre must belong to the same NodeSet as the error node it links with.  A model does not require 
these nodes to work, but will not propagate information without them. 

The final label recognized by I2AT is “Order”.    This label is used to identify the order of a node 
inside a NodeSet group.  This is an optional field, and is only used if the nodes have an inherent 
order in which their values can be determined. 

13.3 STRUCTURAL REQUIREMENTS 
A model needs to conform to three structural requirements in order to be successfully used by 
I2AT.  The first two requirements relate to the link structure of the model.  The first is a report 
node needs a link from one ground state node.  The second is error nodes need to link to at least 
one report node. The third requirement relates to the states of a report node and its parent ground 
truth node.  For the calculation of individual data confidence values, the states of the report node 
and its parent ground truth node must be the same, and in the same order.  This one to one 
mapping is required by the mechanism used to calculate data confidence of reported values.  If 
this requirement is node met, the values calculated for data confidence will be meaningless. 




